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The speeds of convergence of best rational approximations, best polynomial
approximations, and the modulus of continuity on the unit disc are compared. We
show that, in a Baire category sense, it is expected that subsequences of these
approximants will converge at the same rate. Similar problems on the interval
[ - I, 1] are also examined. A problem raised by P. Turan (J. Approx. Theory 29,
1980, 23-89) concerning rational approximation to non-analytically continuable f
on the unit circle is negated as an application. t· 1993 Academic Press. Inc.

1. INTRODUCTION

We examine questions concerning rational approximations to analytic
functions in Izl < 1 and to continuous functions from the point of view of
how they usually behave. As in [1], the notion of "usually" we adopt is the
Haire categorical notion in a complete metric space.

Let A be the space of functions, which are analytic in Izl < 1 and
continuous on Izi = 1, S the subset of A containing functions that can not
be continued analytically beyond Izi = 1 at any point, C2n the class of
continuous real functions of period 2rr, and C[_ 1.1] the class of continuous
real functions on [ - 1, 1].

Write

En(f)E= min III - pIIE= min max I/(z) - p(z)l,
pEnn pEnn ZEE

Rn(f)E= min III - rilE'
r E Rn,n

w(f,t)E= max 11/(z+h)-/(z)II~·,
0< Ihl,,; I
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where JIn is the class of polynomials of degree at most n,
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Since Newman showed that Ixl is uniformly approximated by rationals
much better than by polynomials (cf. [2]), substantial progress has been
made in discovering classes of functions for which rational approximation
is better than polynomial approximation. A well-known example is the
Newman's Lip 1 conjecture which claims that

lim nR,,(j) [_ 1.1) = 0
/I --.-. oc

whenever f E Lip 1. This conjecture was proved by Popov [3].
In spite of these positive results, the present paper shows that, in a

categorical sense, it is expected that subsequences of rational approximants
and polynomial approximants will usually converge at the same rate.
Similar type results for entire functions were considered in [1].

We adopt the familiar categorical vocabulary. A set B is "nOJ.~'here

dense" if the interior of B closure is empty. A set B is "category 1" if B is
a countable union of nowhere dense sets. A set B is "residual" if it is the
complement of a category 1 set. So a residual set contains almost all
functions from a Baire category point of view. A set B is a "G6" if it is a
countable intersection of open sets.

2. RESULTS FOR A

Let

fin = A\JIn,
and

D = {z: Izi ~ 1}.

In the sequel, we always write Pn(f, z) to indicate the polynomial of best
approximation to.f of degree at most n, rn(f, z) a rational function of best
approximation to f from R".". Throughout the paper, the norms are the
uniform norms.

THEOREM 1. Let

{f 1· Rn(f)n I}A I = EA: 1m sup f) = .
n ~ ex E n( D

Then A I is residual in A.
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Proof Let
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then
ex oc

A 1 = n A'; n fI".
n=l n=O

To show that A 1 is residual we need to show that each A 7 is open and
dense in A (note that each nIl is closed and nowhere dense).

Let n be fixed. For any f, g E A, we have

while

and

E,,(g)D ~ E,,(f)D -Ilf - gil n·

Thus

R,,(g)D >- R,,(f)D -Ilf - gil D

E,,(g)D ~ E,,(f)D + Ilf - gil D'

Iff E A 7, then there is an m" ~ n such that

and

(1)

(2)

From (t) and (2) we can deduce that there is a sufficiently small (j > 0 such
that for all g E A with Ilf - gil D ~ (j,

RmJg)D> t-!
EmJg)D n'

and

So g E A 7, which shows that each A 7is open.
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Next, for any given f E A and e, 0 < e < Ij(2n), there is an N > 0 so that

and

N . {e I}3- <mm - - .
2'2n

We observe that if n ~ 2m + 1, then for any q(z) E [[m'

In fact, suppose there is a rational r(z) E Rm. m such that

Ilzn+q(z)-r(z)IID< 1,

(3 )

(4 )

(5)

then by Rouche's theorem, q(z) - r(z) has n zeros in D, but q(z) - r(z) has
numerator of degree less than n.

Now define

where

By (3),

,:yo

f*(Z)=PNU,Z)+ L m -I""m;
j ... ,

Ilf - f*IID~ Ilf -PNU)IID+
C/O e
L m;-l IlzmlIID~2+mNI<e.

;~N+l

(6)

At the same time, for k ~ N + 1,

ce

EmKU*)D~ L mj-lllzm)IID~mk-11+2m;12'
j=k+l

On the other hand, from (5),

RmJf*)D~llm;1Izmk+I+PNU,Z)+. i mj-lzml-rmkU*,Z)/1
J=N+ 1 D

(7)

'CC

- L m j -
I Ilzm;1I D

j~k + 2

~ mk-11 Rmk (zmK+1 + mk + I (pI'Af, Z) + i m;-lzm1
)) - 2m;12

j~N+1 D

~m;;11-2m;12'
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So together with (4) and (7) we get

that is, f* E A 7. This combines with (6) to prove that each A 7is open and
dense in A and completes Theorem I. I

THEOREM 2. Let l

A {f h { } h h 1· R"k(f)D
2= EA: t ere is a sequence nk suc t at 1m f- I

k~xw(,nk)D

Then A 2 is residual in A.

Proof Let

{ . 1 1 Rm (f) D II}
A;= fEA: there IS an m l1 :?n such that -2+-> fn _I >---,

n w(, mIl )D 2 n

then
x:

In a manner similar to the proof of Theorem 1, we can prove that each A ~

is open. Now let n be fixed. For any given f E A and c, 0 < c < 1/2n, there
is an N> 0 such that

(8)

and

3- N . {C I}
<mm 2' 2n .

Set

where

1 The constant 1/2 in the following definition can be replaced by any constant c, 0 < c:;; 1/2.
Corresponding variation of the constants in Theorems 3, 5, 6. 8, and 9 is also allowed.
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As in the proof of Theorem 1, we have

III- 1*lln <t:

and for k ~ N + I,
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where nk = (m~ - 1)/2 - I. Meanwhile, by Bernstein's inequality and (8),

w(f*, n;; l)n:E; (1IP:,,,(flll n +j~ t+ I m j) n;; I + 2j~t I m j-
I

:E; ( 2N 1\ I II D +j:t~ 1 m)) n;; I + 2m; I + 4m;~ 1

:E; 2m; 1+ o(m; I), k -+ Cf.).

Therefore for sufficiently large k,

A similar calculation shows that

R"ll*)n:E; m;; 1 + 2m;~ I'

and

So for sufficiently large k,

that is, 1* E A ~. This finishes the proof. I
Similarly, we can prove

THEOREM 3. Let

k -> 00.

Then A 3 is residual in A.

640/72,'3-4
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3. RESULTS FOR C 21< AND C [ ~ l.l ]

In C 21< and C [ .. 1.1]' there are corresponding results.

THEOREM 4. Let

Then B I is residual in C 21<'

THEOREM 5. Let

B2={f E C 21<: there is a sequence {nk} such that lim ~,(f}fO.21<] =~}.
k~ CD w( , nk )[0.21<] 2

Then B2 is residual in C21<'

THEOREM 6. Let

B3={fEC21<:thereiSaSeqUence{nk}suchthat lim E;,(fho. 21<] =I}.
k~XJ w( , nk )[0.21<]

Then B3 is residual in C2n .

THEOREM 7. Let

{
. Rn(fh-I.I]}

C I = fEC[_I.I]:hmsup E(f) =1.
n~CD n [-1.1]

Then C I is residual in C[_ 1, I]'

THEOREM 8. Let

C2 = {f E C[_. l.l]: there is a sequence {nd such that

I· Rn,(f)[-l.l] _~}
1m I -,

k~CDw(f,n;; )[-1,1] 2

Then C2 is residual in C[ _ I. I]'

THEOREM 9. Let

C3 = {f E C[. 1.1]: there is a sequence {nd such that

I· E",(f)[_ 1,1] - I}
1m I -,

k~ XJ w(f, ni )[ ... 1.1]

Then C 3 is residual in C[- I.l]'
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All the proofs of these theorems are quite similar to those of Theorems
I and 2. However, there are some differences in the space C r _ I, I]' so we
will discuss Theorem 8.

Proof of Theorem 8. The only thing different from the proof of
Theorem 2 is the construction of a function

f*(X)E{fECr_I,,]: there is an ml1~n such that

I I R",Jf) r - 1,1] I I}
2+~>w(f,m,;1)fl.I]>2-~

with

Ilf - f*1I <I:

for any given f E C [ _1,1]' n ~ I, and I: > O. That is done by constructing

for sufficiently large N, where

T,,(x) = cos(n arccos x),

mj =9P,

The rest of the proof remains almost the same as that of Theorem 2, and
we omit the details. I

4. A PROBLEM OF TURAN

Tunin raised the following problem in his well-known "problem-paper"
[5].

PROBLEM LXXXVI. Is it true that, for f E S, we have

with a suitable rational function R:?

We show that its answer is negative.
Let X" be the subset of C2n consisting of those functions f for which there

exists atE [0, 27<) such that

If(s) - f(1)1 ~ n Is - tl

for all s E [0, 27<).
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LEMMA 1. Fix n. Let fEe 2" have a continuous derivative. Given an s > 0,
then there exists a function L(f) E C 2" as well as L(f) E C2rr , a b > 0, and a

constanl M > °so Ihat

Ilf - L(f)11 [0.2,,] < s,

111 - L(/)II [0,2,,] < Mn 111'11 [0,2"]~'

andfor all gEC2" wilh IIL(/)-gllro,2"1<bl(4(n+ 1)), we have

giXn ,

where

- I f"f(X+I)-f(X-t)d
f= -- I

TC 0 2 tan tl2

is the conjugate function off.

Proof Since f has a continuous derivative,

Take

, {TC TC S . { I f' \ }u=b(s)=max N:N~8mm 1 II 11[0.2rr]' 1J' N= 1, 2, ....

Set

(9)

( 10)

Define

kb
X k = n + l'

1r
k = 0, 1, .." 2 b (n + 1).

1r
k = 1, 2, ... , 2 b (n + 1).

Direct calculation now leads to (9). Also,

l(x) - L(j, x)

= _! f" f(x + t) - f(x - t) - L(/, x + I) + L(/, x - I) dl

TC 0 2 tan tl2
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= _! (1 ..../7 f(x+ t)- f(x- t) dt-I'/';; L(f, x+ t)- L(f, x- t) dt
n 0 2 tan tl2 0 2 tan tl2

+fn. f(x + t) - L(f, x+ t) - f(x- t) + L(f, x- t) dt)
....i';; 2 tan tl2

I
=: - - (I', +I'2 +I'3)'

n

We check that

lEd = 0(111'11 [0.2n] fi),
II'21 = O(n 111'11 [0.2n] fi),

while from (9),

and (10) now follows from combining all these estimates.
On the other hand, for any xE[0,2n), say, XE[Xk,Xk+d, there

is a t, = x + c5/(2(n + 1)) or t, = x - c5/(2(n + 1)), according to the cases
x E [Xb (x k+ Xk + d/2) or x E [(Xk + Xk + d/2, Xk+ d, respectively, such that

Now for all gEe2n with II L(f) - gil [0.2n] < (j/(4(n + I)), the above estimate
gives

jg(x) - g(t,)I? ILU~ x) - L(f, t,)I- 2 IIL(f) - gil [0.27<]

> (n + I) Ix - txl -Ix - t,1 = nix - t x I,

so g ¢ Xn . Lemma 1 is therefore proved. I

LEMMA 2. There exists a dense G <l in S.

Proof The class of all polynomials with rational coefficients, TeA, is
countable. We write all elements of T as t,(z), t 2(z), .... We see from
Lemma 1 that, for any given m, n, and k, there is a function Lkmn«(J) E C 2n

as well as lkmn«(J)EC2n such that

and

- 10 - - 10 Mn lit;" II [0.2n]
ILkmn«(J)-Im(tm(e ))1 = ILkmn«(J)-Re(tm(e ))1< I. . (12)

.Jk
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Moreover, the (i5(k I 1/(4(n + 1)))-neighbourhood of L k",,,(81, N k """ does
not intersect X". Write

f*«() = f(8)

for (= e i8
. So f*( () is clearly a continuous function with respect to ( if

fEe2". Now set

U(f,Z)=-I.f f*(w)w+zdw,
2m Iwl~l w-z w

then U(f, z) is an analytic function in Izi < 1, and

lim Re(U(f,z))=f(8),
=~(

lim Im( U(.f~ z)) = 1(81.
=....... ~

Izi < 1,

So with (11) and (12) we get

II tm(z) - U(L km" , z)11 D~ 2Mn II t;" II [0.27<1 .Jk -1. (13 I

Let

x ~'

G,,= U U Nt,m,'
m= 1 k= 1

It is evident that Nt",,, does not intersect the set

X/~ = {f E A: Re(f(ei8
)) EX" }

since N km" does not intersect X". Furthermore, since T is dense in A and
G" contains all functions U(L km", Z I for k, m = 1, 2, ..., together with (13),
we see that G" is dense in A. Define

co

G= n G",
fl=)

then G is a dense Gb in A and clearly, G only contains functions whose real
parts are nowhere differentiable on lzl = 1, that is, G c s. I

We conclude that Tud.n's problem has a negative answer.

THEOREM 10. There exist functions f E S n A 2 •



USUAL BEHAVIOR OF RATIONAL APPROXIMATION 289

Proof From Lemma 2 and Theorem 2, a subset of such f is
residual. I

However, much as in Theorem 2, we can establish the following weak
form of Turan's problem.

THEOREM 11. Let

{f I· Rn(f)o }
A 4 = EA: Ims.u.p ({ -1) =0 .

n_Tw.,n D

Then A 4 is residual in A.

Similarly, in the notation of Theorems 5 and 8 we have

THEOREM 12. There exist functions f E B2 which are nowhere differen
tiable.

THEOREM 13. There exist functions fEe 2 which are nowhere differen
tiable.
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